参天生长大模型:昇腾AI如何强壮模型开发与创新之根?(3)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
紫东.太初目前已经具备领先的图文音跨模态理解与生成能力,可轻松完成智能问答、图片生成、视频理解与等任务,这些能力将在工业质检、影视创作、互联网推荐、智能驾驶等领域广泛应用。例如在纺织工业生产线中的应用案例中,紫东.太初融合多模态信息,可以通过声音识别来判断纺织机运转过程中断经和断纬的情形,同时通过视觉识别来判断布匹的缺陷,展示出综合研判的能力和广阔的应用前景。
由于三模态大模型非常接近人类的信息处理方式,其对信息数据有非常好的协同掌握能力,因此可以非常广泛地应用于产学各领域,孵化出更多新应用。新华社技术局、长安汽车、中国移动、千博手语等企业通过加盟多模态人工智能产业联盟,将开源的多模态大模型与自身业务融合创新,基于紫东.太初陆续孵化出新媒体内容检索平台、智能座舱、南宋御街数字人、手语教考一体机等场景化行业应用,充分展现了大模型的潜力与产业价值。
从大模型技术深处挖掘,我们会发现紫东.太初的打造,得益于昇腾AI的产业底座,尤其是昇思对大模型的原生支持,让大模型具备了快速开发、极简训练的“开发之根”。
浇灌创新之花
从昇思AI框架中汲取“创新”的营养浇灌大模型,是使能其发展的关键。昇思 MindSpore 在进行架构设计时就考虑了大模型开发时遇到的内存占用、通信瓶颈、调试复杂、部署难等问题,针对性进行技术研究与创新。
在大模型支持方面,昇思实现了原生支持大模型,能够在业界率先支持全自动并行计算。在大模型训练中,可以同时使用数据并行、算子级模型并行、Pipeline 模型并行、优化器模型并行、异构并行、重计算、高效内存复用多维度、全种类的分布式并行策略;原创集群拓扑感知的多维度自动混合并行,实现超大模型自动切分、并行计算,显著提升集群加速能力;新的 DNN分布式并行编程范式,可以实现低代码算法切换,大幅节省开发时间。
在科研创新和应用领域,昇思面向 8 大科学计算场景推出 MindSpore Science 系列套件,其包含业界领先的数据集、基础模型、预置高精度模型和前后处理工具,可以加速科学行业应用开发。
面向产业生态的开放,昇思正在与产学研各界一同推进开源开放,昇思 MindSpore AI 框架已经成为大模型开发的技术支撑,开源开放更使得产学界可以基于它研发自己的大模型。昇腾社区和昇思MindSpore社区一直在加强对大模型开源开放的支持。截至7月,昇思社区下载量已经突破200万,社区贡献者超过5900人。
99科技网:http://www.99it.com.cn

IT之家 7 月 28 日消息,据浙江大学杭州国际科创中心发布,近日浙江大学杭州国
快资讯2022-07-28
