ChatGPT发疯怎么办?小冰李笛:两个关键,我可破之(3)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
类似ChatGPT的AI每次回答50字,来回答一般的查询业务,那么谷歌每年成本将增加 60亿美元 。 值得注意的是,无论哪位国内玩家堆出了一个与GPT-3.5甚至GPT-4媲美的大模型,还须找到能够落地跑起来的应用场景,唯有实现商业闭环,才不致血本无归。 第二条路,是从大模型中去粗取精 。 展开来说,就是在尽可能保留、甚至提高大模型某一单项能力的前提下,缩小参数量级,致力于用更小的模型实现大模型表现出来的功能。 如果把大模型看作一辆自行车,堆参数的过程就是在大模型上实现某个效果的过程,过程艰辛而缓慢。去粗取精之后,不用自行车缓慢前行就能达到效果,相当于在通往同一目标的路上造火箭。 亚马逊在走这条路,方法是直接从小模型起手,不过这条路能走通,需要一个关键前提:中小模型可以接近、甚至达到大模型展现出来的实用能力。 砍掉不需要的枝叶,向下探索具有特定功能的模型规模最低下限,能够一定程度上缓解大模型训练带来的成本压力。 但这条路线亦有争议,一是因为ChatGPT大模型已经展现出应用可行性,坚持这种做法势必在技术上逆流而行;二是即便成本更优,却尚未有现实案例压阵,证明这种路线就能在AI应用落地较量中取得最后的胜利。 第三条路与前两者不同,并非技术差异,而是直接从商业化角度打出竞争优势。 这类玩家不需要在技术上多下文章,而更考验商业创新能力,属于想好场景应用后“拿钉找锤”的模式。 目前,国外已经有顺着这条路发展的可参考案例,比如AI初创公司Jasper,就是基于GPT-3开放的API提供各式服务,利用AI为博客文章、社交媒体帖子及网页等平台生成文字内容。 但凡产品体验足够好,或者场景资源足够丰厚,就能积攒大量用户,形成自己的核心竞争力。 反向思考之,正因为核心竞争力不是技术上的,走这条路的公司,头顶永远悬着一柄达摩克利斯之剑。把产品甚至公司的命运寄托在他人手中,随时有被卡脖子的风险,如何能不时刻提心吊胆? 三条路线摆在眼前,利弊也已经初步显现。第一条路,意味着巨大的成本;第二条路,方案尚待验证;第三条路,核心生产资料不可控。 哪一条才通向罗马?又或者,这三条路之外,是否还会出现直通AI应用落地的潜在捷径? 李笛说,他们选择第二条路 。小冰链也正是基于这条路径之上探索出来的产物,本质上仍旧是从“可解释人工智能”的角度,探索成本、风险可控的AI商业化落地应用。 至于方案验证,或许也不用等太久,李笛说,未来小冰链会和必应合作,将这种方法应用到搜索引擎上。 实际应用效果如何,我们拭目以待。
99科技网:http://www.99it.com.cn

如果听腻了ChatGPT,今天我们看一个围绕着IBM,人工智能和NASA的高能案例。
快资讯2023-02-27
