针对深度学习的“失忆症”,科学家提出基于相似性加权交错学习(3)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
深度线性神经网络实现快速和高效学习新事物
接下来在前两个条件基础上增加了3种新条件,研究了新的分类学习动态,其中每个条件重复10次:
FoL(共计n=6000张图像/epoch);
FIL(共计n=54000张图像/epoch,6000张图像/类);
部分交错学习 (Partial Interleaved Learning,PIL)使用了很小的图像子集(共计n=350张图像/epoch,大约39张图像/类),每一类别(新类别+现有类别)的图像以相等的概率呈现;
SWIL,每个epoch使用与PIL 相同的图像总数进行重新训练,但根据与(新)“boot”类别的相似性对现有类别图像进行加权;
等权交错学习(Equally Weighted Interleaved Learning,EqWIL),使用与SWIL相同数量的“boot”类图像重新训练,但现有类别图像的权重相同(图3A)。
作者团队使用了上述相同的测试数据集(共有n=9000张图像)。当在每种条件下神经网络的性能都达到渐近线时,停止训练。尽管每个epoch使用的训练数据较少,预测新“boot”类的准确率需要更长的时间达到渐近线,与FIL(H=7.27,P<0.05)相比,PIL的召回率更低(图3B第1列和表1“New class”列)。 对于SWIL,相似度计算用于确定要交错的现有旧类别图像的比例。在此基础上,作者团队从每个旧类别中随机抽取具有加权概率的输入图像。与其他类别相比,“sneaker”和“sandal”类最相似,从而导致被交错的比例更高(图3A)。 根据树状图(图2B),作者团队将“sneaker”和“sandal”类称为相似的旧类,其余则称为不同的旧类。与PIL(H=5.44,P<0.05)相比,使用SWIL时,模型学习新“boot”类的速度更快,对现有类别的干扰也相近。此外,SWIL(H=0.056,P>0.05)的新类别召回率(图3B第1列和表1“New class”列)、总准确率和损失与FIL相当。EqWIL(H=10.99,P<0.05)中新“boot”类的学习与SWIL相同,但对相近的旧类别有更大程度的干扰(图3B第2列和表1“Similar old class”列)。 作者团队使用以下两种方法比较SWIL和FIL:
内存比,即FIL和SWIL中存储的图像数量之比,表示存储的数据量减少;
加速比,即在FIL和SWIL中呈现的内容总数的比率,以达到新类别回忆的饱和精度,表明学习新类别所需的时间减少。
SWIL可以在数据需求减少的情况下学习新内容,内存比=154.3x (54000/350),并且速度更快,加速比=77.1x (54000/(350×2))。即使和新内容有关的图像数量较少,该模型也可以通过使用SWIL,利用模型先验知识的层次结构实现相同的性能。SWIL在PIL和EqWIL之间提供了一个中间缓冲区,允许集成一个新类别,并将对现有类别的干扰降到最低。 图3 ( A ) 作者团队在五种不同的学习条件下预训练神经网络学习新的“boot”类(橄榄绿),直到性能平稳:1)FoL(共计n=6000张图像/epoch);2)FIL(共计n=54000张图像/epoch);3) PIL(共计n=350张图像/epoch);4) SWIL(共计n=350张图像/epoch)和 5) EqWIL(共计n=350张图像/epoch)。(B)FoL(黑色)、FIL(蓝色)、PIL(棕色)、SWIL(洋红色)和 EqWIL(金色)预测新类别、相似旧类别(“sneaker”和“sandals”)和不同旧类别的召回率,预测所有类别的总准确率,以及在测试数据集上的交叉熵损失,其中横坐标都是epoch数。 基于CIFAR10使用SWIL在CNN中学习新类别
99科技网:http://www.99it.com.cn

原标题:Epic发布Unreal 4.27预览版!针对VR/AR增加一系列内容和优化 一起来看看
元宇宙2021-06-09
