Nature子刊 | 像婴儿一样学习,DeepMind新模型28小时学会物理世界规则(2)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
另一方面,发展心理学认为一个物理概念对应于一组未来如何展开的期望。例如人们期望物体不会神奇地从一个地方突然传送到另一个地方,而是通过时间和空间追踪连续的路径,这就有了连续性的概念。因此,有一种测量特定物理概念知识的方法:违反期望 (VoE) 范式。
使用 VoE 范式探索特定概念时,研究人员向婴儿展示视觉上相似的阵列(称为探测(probe)),这些阵列与物理概念一致(物理上可能)或不一致(物理上不可能)。在这个范式中,「惊讶」是通过凝视持续时间来衡量的。
方法介绍
首先,DeepMind 提出了一个非常丰富的视频语料库 —— Physical Concepts 数据集。 该数据集包含 VoE 探测视频,针对五个重要的物理概念,这些概念在发展心理学中被视为核心要素,包括连续性、目标持久性和稳固性。第四种是不可变性,用于捕捉某些目标属性 (例如形状) 不会改变的概念;第五个概念是方向惯性,涉及到运动物体在与惯性原理一致的方向上发生变化的期望。
最重要的是 Physical Concepts 数据集还包括一个单独的视频语料库作为训练数据。这些视频展示了各种程序生成的物理事件。
图 2:用于训练模型的视频数据集示例。
PLATO 模型架构
Deepmind 旨在建立一个能够学习直观物理学的模型,并剖析模型实现这种能力的原因。PLATO 模型中实例化了 AI 领域一些先进的系统。
首先是目标个性化过程。目标个性化过程将视觉的连续感知输入切割成一组离散的实体,其中每个实体都有一组对应的属性。在 PLATO 中,每个分段的视频帧通过感知模块分解为一组目标代码(图 3a-c),从而实现从视觉输入到个体目标的映射。PLATO 没有学习分割场景,但给定一个分割目标,其学习一个压缩表示。
其次,目标跟踪(或目标索引)为每个目标分配一个索引,从而实现跨时间目标感知和动态属性计算之间的对应关系(图 3b,c)。在 PLATO 中,目标代码在目标缓冲区中的帧上累积和跟踪(图 3d)。
最后一个组件是这些被跟踪目标的关系处理,这一过程受到发展心理学中提出的「物理推理系统」的启发,该系统可以动态地处理物体的表征,产生新的表征,这些表征会受到物体与其他物体之间关系和互动的影响。
PLATO 学习目标内存和目标感知历史之间的交互作用(图 3d),以生成针对下一个目标的预测视频帧并更新基于目标的内存。
图 3:PLATO 包括两个组件:感知模块(左)和动态预测(右)。
99科技网:http://www.99it.com.cn
