机器学习引发对科学见解的反思(2)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
粒子物理的数据与众不同。虽然已经证实卷积神经网络(CNN)对树木、猫和食物等日常物体图片的分类非常高效,但它并不适合粒子碰撞。加州大学圣地亚哥分校的粒子物理学家哈维尔•杜尔特(Javier Duarte)表示,问题在于来自大型强子对撞机(LHC)的碰撞数据无法作为图像。 华而不实地描述LHC碰撞可误导甚至堵塞整个探测器。实际上,在数百万个输入中只有少量几个输入在记录信号,就像白屏中有几个黑色像素。这导致卷积神经网络中的图像质量很差,但在一个被称为图形神经网络(GNN)的不同新框架中,效果则很好。 除了格式奇怪以外,还有大量的数据,大约为每秒约1拍字节,其中只有少量高质量数据被保存下来。为了更好地筛选数据,研究人员想要训练更敏锐的算法。杜尔特说,要想提高效率,这种算法要具备惊人的速度,在微秒内执行。剪裁和量化等机器学习技术能使算法达到目标。 借助机器学习,粒子物理学家可以从不同的角度观察数据。他们不仅关注单个事件,还学习和思考碰撞期间发生的几十个其他事件,例如希格斯玻色子衰变为两个光子。虽然任意两个事件之间没有因果关系,但研究人员现在接受一个更全面的数据视图,而不仅是单个事件分析得出的零碎视图。 更引人注目的是,机器学习还迫使物理学家重新审视基本概念。麻省理工学院的理论粒子物理学家杰西•泰勒(Jesse Thaler)说:“过去,我自己对对称性的看法不严密,强迫自己教授计算机什么是对称,也是帮助自己理解对称到底是什么。”对称需要参考系,换言之,镜子中变形的球体图像到底是否对称?如果不知道镜子本身是否变形,就无法知道答案。 粒子物理学中的机器学习仍然处于早期阶段,实际上,研究人员现在对待相关技术就像对待厨房的洗碗池。杜尔特承认:“它也许不适合粒子物理学中的每一个问题。” 在一些粒子物理学家深入研究机器学习的同时,脑中浮现出一个令人不安的问题:他们是在研究物理学还是在研究计算机科学?往往不被视为“真正的物理学”的编程已经存在;类似的担忧也在困扰机器学习。有的研究人员担心机器学习会遮掩非常复杂的情况,他们正在构建算法,使用人类能够理解的语言来提供反馈。而算法也许不是唯一负责沟通的主体。 泰勒说:“另一方面,我们希望机器能够学习如何像物理学家那样思考。我们也要多学习如何像机器那样思考。我们需要学会讲对方的语言。”
99科技网:http://www.99it.com.cn
