谷歌华人研究员发布MobileNeRF,渲染3D模型速度提升10倍(4)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
在不损失一般性的情况下,研究人员描述了合成360度场景中使用的多边形网格,首先在单位立方体中以原点为中心定义一个大小为P×P×P的regular grid,通过为每个创建一个顶点来实例化V,通过为每个网格边缘创建一个连接四个相邻voxel顶点的四边形(两个三角形)来实例化。
在优化过程中,将顶点位置初始化为V=0,即对应于regular Euclidean lattice,并对其进行正则化处理,以防止顶点离开voxel,并在优化问题受限的情况下使其返回到中间位置。
训练阶段2: 对不透明度进行二进制化,因为虽然经典的栅格化可以很容易地将碎片分解,但对于半透明碎片的处理却很麻烦。
一般硬件实现的渲染管道并不支持半透明的网格。渲染半透明网格需要对每一帧进行排序,因此要按从后到前的顺序执行渲染,以保证正确的alpha合成。
研究人员通过将平滑不透明度转换为离散/分类不透明度解决了这一问题。
为了通过photometric supervision的方式来优化离散不透明度,模型还采用了直通式估计器(straight-through estimator)。需要注意的是,其梯度是透明地通过离散化操作,不考虑平滑透明度和离散透明度的值。为了稳定训练,研究人员选择对连续和离散模型进行联合训练。
训练阶段3: 提取一个稀疏的多边形网格,将不透明度和特征烘焙成纹理图,并存储神经递延着色器的权重。网格被存储为OBJ文件,纹理图被存储为PNG文件,而延迟着色器的权重则被存储在一个(小型)JSON文件中。
在传统的光栅化pipeline中,想要获得高质量的光栅化结果,混叠(aliasing)是一个必须考虑的问题。虽然经典的NeRF通过半透明体来实现平滑的边缘,但半透明体需要对每帧多边形排序。
99科技网:http://www.99it.com.cn

今日,谷歌举办I/O 2022 开发者大会,并正式发布Android 13, OPPO Find N成为全球首批
快资讯2022-08-11
