AI加速卡面临“禁售”,国内医疗AI们会被卡脖子吗?(5)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
行业人士也赞同这一观点。国内某知名AI新药企业向动脉网介绍到,目前政策不会对其业务产生影响。
某知名AI芯片公司的研发人员在与动脉网交流时也表示,基于目前仍然可以使用已有设备的缘故,影响并不会太大;但后续的扩容或者正常的设备替换或许会受到潜在的影响。不过,如果许可证的范围进一步扩大到更多的产品,可能行业未来就会受到一定影响。
略显隐忧,国内医疗AI
仍在探索可替代方案
一个好消息是,在目睹了前几年其他行业面临的技术限制后,国内AI行业一直在探索替代方案。 目前,AI加速除了基于GPU的加速卡方案,也有CPU加速、基于ASIC的AI芯片以及FPGA加速三种硬件类型 。
CPU方案的通用性是最强的,但效率也最低。最为关键的是,高性能CPU上对于国外企业的依赖度甚至比GPU更高。英特尔和AMD等国外巨头早已在X86架构上建构了无数专利壁垒,要想实现突破极为困难。因此,这一方案在AI加速上应用得越来越少。
基于GPU的加速方案应用最为广泛,根据预测,GPU加速将在2025年在所有AI加速中占到接近6成的比例。这也是为何英伟达股价能够节节高涨的关键。
不过,GPU加速并非在所有场合都具有优势。比如,在与专为某个用途定制的ASIC,比如捆绑了AI算法的AI芯片比较时,GPU方案未必具有优势。再加上对可能存在的技术限制的风险考虑,国内头部人工智能企业在近年自研或与AI芯片公司合作开发AI芯片已经蔚然成风。
数据显示,2021年国内AI芯片行业投融资事件109起,总金额达到396.36亿元。全球范围来看,AI芯片初创公司的投融资事件数量在170起,累计投资金额约为99亿美元,是上年同期的三倍之多。AI芯片受资本的热捧可见一斑。
不过,目前国内AI芯片刚刚发布,仅从公布的理论算力上较GPU加速仍然有着数量级的差距。此外,目前还没有见到在医疗AI上实际落地的应用,其具体应用效果如何还有待观察。
99科技网:http://www.99it.com.cn
