对话加拿大工程院于非院士:寻找 AI 领域的「香农定理」(3)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
与此同时,如何 量化智能 ,对于科学的「智能」至关重要。
1950年,图灵首次提出一个判断机器是否能思考,测试机器是否能表现出与人类相同、或无法区分的智能行为能力的测试,给「可计算性」下了一个严格的数学定义。然而,图灵测试中没有量化的智能度量。
对于如何来衡量智能度量,不少研究人员曾进行过粗略的讨论。但是这些工作都是从心理学、哲学或者工程技术角度出发的,对智能的定义仅限于文字性的描述和探讨,并没有从科学的角度深入探讨智能的本质,更没有从数学上量化智能。
针对这个问题,于非在《智能简史》中探索智能的本质,借鉴了能量和信息的量化思想,开创性给出智能的定义,并首创性地提出了一个可衡量相对智能程度的公式: dL = ∂S/∂R ;其中, dL 指智能的变化,S是当前的秩序(order)和预期的秩序的相似,R是一般意义的参数(例如,时间、数据量等),因为智能的变化与多个参数有关,所以在数学上表示是一个多元函数。考虑到多元函数关于其中一个自变量的变化率时 ,一般用偏导?来表示。
和热力学熵相似,智能不是一个绝对量,只是一个相对量,描述的是变化多少。智能定义为一种「前后」过程的尺度标准:在一个学习过程中,衡量随着时间的推移耗散了多少信息。热力学熵测量能量的扩散:在特定温度下,在一个过程中扩散了多少能量,或者扩散得有多广。
其中dS是熵的变化, 是传递的能量,T是温度。
图注:于非提出的量度智能数学公式 回顾一下人类科技历史中涉及的几个重要因素:质量、能源、信息和智能,可能会给我们一些认识智能的未来方向的提示。在认知革命之后,人类获得了发明技术的能力,以比以往任何时候都更有效地为稳定宇宙这一过程做出贡献。
人类的合作,从本质上说,其实是形成了有序的特殊社会经济结构,使得物质、能量、信息和智能迅速的流动,从而促进我们的宇宙稳定。为了促进社会经济系统中的人类合作,人类发明了使质量(运输网络)、能源(能源网络)和信息(互联网)互联的技术。
从网联范式演化的历史中,我们可以观察到更高级别的网联范式提供了更高的层次抽象。
当人们很方便的得到有质量的东西后,大家会关心拿到有质量的东西的速度有多快。所以,能量的概念被提出。能量被量化为物质移动的速度有多快。
当人们很方便的得到能量后,大家会关心能量扩散的量有多少。所以, 热力学熵 的概念被提出。熵是一个能够能定量的测量能量的扩散程度的抽象概念。熵表示一个能量扩散的过程中,在某个特定温度下,能量扩散了多少能量。另外,信息熵和热力学熵等价。所以,信息也可以说是对能量扩散的量有多少的量化。
99科技网:http://www.99it.com.cn

IT之家 7 月 10 日消息,加拿大最大电信运营商之一的罗杰斯(Rogers)于当地时间
快资讯2022-07-10
