这项最新调查劝退效果拉满:67% 的 NLPer 怀疑自己的研究没价值(3)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
Q1-6:评审期间,作者匿名可保证对研究的传播进行限制。
ACL 会议的匿名政策比许多其他会议(如 NeurIPS、ICLR 和 ICML)要严格得多。调查表明,尽管争议很多,但 NLP 社区总体上是支持这一政策的, 63% 的人认为匿名可以保证限制预印本的传播)。这个问题也显示出了明显的性别差异,有 77% 的女性表示同意,只有 58% 的男性表示同意。
规模化、归纳偏差和来自临近领域的启发
规模最大化是终极方案吗?
Q2-1:规模化(scaling)实际上可以解决任何重要问题。
强化学习之父 Richard Sutton 在其文章 “The Bitter Lesson”中曾发表一个广为人知的观点:利用计算的一般方法最终是最有效的,而且效率提升幅度会非常大。在这种观点下,模型做得越来越大,研究者期望在有足够训练数据和模型容量的情况下,与引入语言结构或专家设计的归纳偏差相比,使用更少的、更通用的原则性学习机制是更优的方案。 然而,这项调查的结果表明,NLP 研究者对 Sutton 这种观点的认可程度实际上远远低于预期。仅有 17 % 的人同意或弱同意:鉴于本世纪算力和数据的可能发展程度,扩大现有技术的实施规模将足以解决 NLP 的所有重要问题。在人人似乎都对大模型趋之若鹜的当下,这个数字是极低的。 语言理论和归纳偏差的价值
Q2-2:以语言理论为基础的语言结构的离散表示(如词义、句法或语义图)对于解决一些重要的现实世界问题或 NLP 中的应用是必要的。
Q2-3:专家设计的强归纳偏差(如通用语法、符号系统或受认知启发的计算原语)对于解决一些重要的现实世界问题或 NLP 中的应用是必要的。
Q2-4:到 2030 年,被引用次数最多的五个系统中至少有一个可能会从过去 50 年语言学或认知科学研究结果中汲取明确的灵感。
99科技网:http://www.99it.com.cn

贝壳金融贝壳金融2022最新消息清退登记官方清退中心办理网址:【sddian.net】←
快资讯2022-08-31