主页 > 快资讯 > 正文

图形学人物简史:两位图灵奖与奥斯卡得主的图形学研究往事(8)

2022-08-30 17:11来源:未知编辑:admin

扫一扫

分享文章到微信

扫一扫

关注99科技网微信公众号

星球大战的导演 Lucas 不懂技术,但是他看到了工业光魔公司做出的特效,并深深相信计算机技术将成为电影制作中重要的一部分。电影行业中终于有一个有头有脸的人物愿意投资我们了。

图注:科幻片《星球大战》 1979年,我离开 NYIT,在工业光魔开始搭建计算机部门。Lucas 吸引了很多对这个行业感兴趣的人,他野心勃勃,想要改变电影制作的三大板块:视觉特效、视频剪辑和数字音效。于是我们便在这三大板块里进行深耕。他的公司位于旧金山北部,这意味着我们可以坐车一小时到硅谷,或者乘飞机一小时到好莱坞。旧金山是一个很好的地点,因为我们可以快速到达硅谷和好莱坞,而其本身又相对偏远。 幸运的是,George 支持我们要把成果发布到更大的圈子里去的决定。当时我们的一个竞争对手买了一台价值 1000万美元的 Cray-1 超级计算机,于是我们讨论了“制作一部未来水平高质量的电影需要什么”并进行了一番计算。最后得出的结果是,我们需要100台 Cray-1 的计算能力,但只能付得起 1/10 的价格。按照计算速度指数曲线来看,我们还需要14到15年。所以我们最好把时间和资源花在我们现在看到的许多问题上。 如果我们要设定一些疯狂的目标,就需要先明确问题是什么以及我们需要采取什么行动。巧合的是,当我们在15年后完成《玩具总动员》的故事时,我们已经非常接近曾经对于计算能力的估计。在未来变化的影响下工作的过程是非常需要重视的,要处理电影分辨率的图像,就需要我们设计并构建一个系统来在计算机中保存整个填充分辨率图像。而这就需要更多在工作站里可用的并行处理,于是图像计算机应运而生。 在渲染方面, Lauren Carpenter 开发了一种可以处理高复杂性的新渲染方式。正如 Pat 所说,我们在灯光和阴影方面取得重大进展后, Rob 加入了我们。我们三个人在我办公室的白板前碰面,讨论我们的未来的大目标应该是什么。 当时SOTA的渲染多边形数量大约是四万个,我们通过 Pat 的计算得出我们的目标是八千万个。我不知道为什么我们没有四舍五入到1亿,这个结果是计算中突然蹦出来的。这是满足工业光魔公司高标准的条件,也是我们的目标。我们对于复杂性、运动模糊和景深的追求高到疯狂。我们想要树立并追求一个高到离谱的目标,所以逼迫自己以一种完全不同的方式来思考这个问题。这导致了一系列新想法的诞生,也改变了从 Lawrence 架构开始的渲染复杂性。与我们一起工作的硬件设计师 Rodney Stock 建议我们考虑点采样方式,其做法类似于印刷中使用的抖色(dithering)方式。Rob 做了这个实验并尝试了各种不同的方法来进行样本的蒙特卡洛分布,最终他想出了一个很好的方法来实现样本分布。而Tom porter 提出了一个很关键的想法,他将样本随时间分散,这解决了运动模糊的问题。 然后 Rob 重新编写了一个面向对象的清晰架构,使得软件能够随着新技术的开发而进化。我们知道,除非计算能力至少提高100倍,否则这是不现实的,但我们也知道,或迟或早,我们的想法终将变成现实。我构思了一个短片来展示了我们在 Lucas 影业所做的工作,而这个短片就是 Andre & Wally B。John Lasseter 加入了我们并创造了动画角色,并赋予了角色只有一个真正的好动画师才能给予的生命。那是一个激动人心的时代,在那时,极具创造力的人们在各自的领域纷纷挣脱桎梏,突破界限。 不过,工业光魔公司的情况出现了变化,到了 1984 年底,George Lucas 发现有必要把计算机部门卖出去。最终 Steve Jobs 买下了这个部门。尽管 George 告诉他我们一心想做动画,但皮克斯公司还是诞生了。 于是我们开始从事制造和销售特殊用途计算机的业务,这是我从来没有预料到的,包括 Steve 在内的所有人都没有任何制造、销售高端硬件的经验,所以我们犯了很多错误。我们雇了制造人员,为客户编写软件,迪士尼就是我们的其中一个客户,他们希望我们为手绘单元格上色。 令我惊讶的是,当我们开始制造时,我学到了很多东西。我以前认为制造是相当平庸的一件事,但我错了。尽管我们失败了,但这些失败是企业进行多次调整的结果,而不是真的做错了什么。我们无法与不断加速的摩尔定律竞争,这种垂死挣扎的潜在动力带来了很多变化,是时候退出硬件业务、专注于软件业务了。因为我们希望保持迪士尼对我们的信任,但我们为他们编写的软件只能在我们的硬件中运行,所以我们将硬件业务卖给了另一家公司,让别人制作图像。 我们与迪士尼签订了另一份合同把软件转移给 SGI。犹他大学毕业生 Jim Clark 使用几何引擎(Geometry Engine) 和 GPUs 的前身创建了 SGI。 此时,做工作站的公司之间还没有很激烈的竞争。图片渲染质量很好,但都很难用。Jim 找到我,建议我们应该共同为行业设计一个渲染界面。最后共有 19 家公司参与了这一过程。我感到很自豪的一个决定是我们邀请 Pat Hanrahan 做我们的设计架构师。Pat 赢得了所有人的信任,他是一个聆听者,同时也是一个伟大的设计师。Pat 的设计非常简洁,他在 Robert 的概念基础上构建了复杂的着色语言。他所做的这些工作都是为了让人们更容易获得渲染,这就是 RenderMan 界面的故事。

99科技网:http://www.99it.com.cn

相关推荐
一分钟教你两个小妙招在线文字转语音,小白也能学会! 一分钟教你两个小妙招在线文字转语音,小白也能学会!

随着科技的不断发展,当我们面对堆积如山的文字时,我们不仅可以通过视觉观

快资讯2022-08-30

 Kura Tech用AI生成世界最高性能的AR光学 Kura Tech用AI生成世界最高性能的AR光学

2022年获得CES创新奖的一流增强现实 (AR) 智能眼镜和平台开发商Kura Technologies今天

快资讯2022-08-29

百度计算机视觉首席科学家王井东:在视觉的竞技场,研究与落地没有明显的界限 百度计算机视觉首席科学家王井东:在视觉的竞技场,研究与落地没有明显的界限

在王井东看来,百度搜索引擎、自动驾驶、智能云、小度等等不同的业务线中,

快资讯2022-08-28

机器学习方法在经济研究中的应用综述 机器学习方法在经济研究中的应用综述

机器学习方法在经济研究中的应用综述。

快资讯2022-08-28

理论计算机科学家 Boaz Barak:深度学习并非“简单的统计”,二者距离已越来越远 理论计算机科学家 Boaz Barak:深度学习并非“简单的统计”,二者距离已越来越远

本文介绍了深度学习或机器学习中的概念归纳为统计学中的词义,也引起了大多

快资讯2022-08-28

KDD最佳论文奖首次独立颁给中国内地机构!达摩院开源工作获奖,面向联邦图学习 KDD最佳论文奖首次独立颁给中国内地机构!达摩院开源工作获奖,面向联邦图学习

刚刚,KDD 2022所有奖项正式对外公布。

快资讯2022-08-28

深度学习加速技术会是AI“高度近视”的破解之法? 深度学习加速技术会是AI“高度近视”的破解之法?

数据精度、存储空间、处理速度,发展AI必须三者共同进步。

快资讯2022-08-25

物理学家用AI改写教科书!质子中发现新的夸克,可能性高达99.7% 物理学家用AI改写教科书!质子中发现新的夸克,可能性高达99.7%

用机器学习搞出的新发现,要改写物理教科书了?

快资讯2022-08-24

如何科学救助野生动物? 如何科学救助野生动物?

救助野生动物往往具有应急工作特征,我们需要扮演好野生动物的急救医生等角

快资讯2022-08-15

让联邦学习从可用到好用!阿里开源最新隐私保护计算框架FederatedScope 让联邦学习从可用到好用!阿里开源最新隐私保护计算框架FederatedScope

5月5日,阿里巴巴达摩院发布新型联邦学习框架FederatedScope,该框架支持大规模

快资讯2022-08-15