明略科技CTO郝杰:会话式AI应该是“静悄悄”的辅助智能(4)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
落地之道:“贪食蛇”策略
会话智能产品如何实现应用落地?
如果用一个坐标轴来表示,横轴的长度代表垂直行业的个数,纵轴的长度代表场景的个数,那么,垂直行业乘以水平的场景构成的二维平面上会被划分成 N 个格子,一个格子代表一个细分行业、细分场景。
这就是明略科技的会话智能产品的应用蓝图,明略希望,未来能够覆盖到整个二维平面 80% 以上。
郝杰详细介绍了这个应用蓝图的实现路径。
“我们采取‘贪食蛇’的策略,围绕着头部行业、重点场景,逐步提升扩展覆盖率”,选择三到五个头部(重点)行业、三到五个重点场景,在二维平面上,就选择了一个相对聚焦的由十几个方格构成的局部(蓝图)。就像玩‘贪吃蛇’游戏,就近吞并。这与人工智能的贪心算法类似,先‘吃’下来一个行业头部的几个重点场景,把几个大客户拿下来。之后,行业中的中长尾的客户也就能拿下来了,采取头部带动中长尾这样的扩张策略,实现对场景逐步覆盖”。
在多行业、多场景、大范围的应用会话智能过程中,常常遇到一些挑战,例如,如果技术识别率或准确率上不去怎么办?很多 To C、To B 的公司做智能类的应用常常会遇到的一个技术瓶颈是,准确率做到百分之八十就上不去了,这样的准确率,用户并不会买单。
在这种情况下,要提升识别率,就需要挖掘特定场景下的行业知识、先验知识。通常,要先进行标签化,因为人类的认知就是从简单的分类给事物打标签做起的。因此,在先验知识或行业知识中,最重要的就是分类标签。在明智中台里,有各种各样的标签,如客户中台里的客户标签,业务中台里面,与业务流程相关的标签等。目前明略已积累了各行各业各种场景下数量庞大的标签。
此外,还需要在算法和标签库的先验知识的基础上做改造。比如,语音识别算法,在没有线下门店相关行业和场景的标签库前提下就是一个通用的语音识别标签库。把标签库里的这些词汇预先编入到通用的语音识别词典中去,就构建出一个包含了新词、热词的更大的搜索网络。
“在此基础上,针对专门性的场景,通用的语音识别率、准确率可能在 60%-75% 之间。而依靠对场景的理解和建模,依靠这些先验知识,能将识别率拔升到 75%-90% 之间”,郝杰表示,这是明略科技在 To B 赛道上的生存之道。
99科技网:http://www.99it.com.cn
