主页 > 快资讯 > 正文

DeepMind创始人:AI 的强大,超乎我们的想象(10)

2022-09-15 13:48来源:未知编辑:admin

扫一扫

分享文章到微信

扫一扫

关注99科技网微信公众号

Lex Fridman:你怎么理解生命起源?

Demis Hassabis:我认为 AI 的最终用途是将科学加速到极致。它有点像知识之树。如果你想象这就是宇宙中要获得的所有知识,但目前为止,我们几乎只触及了它的表面。AI 会加速这个过程,尽可能多地探索这棵知识树。

Lex Fridman:直觉告诉我,人类的知识之树是非常小的,考虑到我们的认知局限。即使有工具,我们仍然不能理解很多事情。这也许是非人类系统能够走得更远的原因。

Demis Hassabis:是的,很有可能。

但首先,这是两件不同的事情。就像我们今天理解了什么,人类的思想能理解什么,我们要理解的整体是什么,这里有三个同心,你可以把它们想象成三棵更大的树,或者探索这棵树的更多分支。有了 AI 后我们会探索更多。

现在的问题是,如果你思考一下我们能理解的事物的总体是什么,可能有些事物不能被理解,比如模拟之外的事物,或宇宙之外的事物。

Lex Fridman:因为人类大脑已经习惯了这个有时间的三维世界的状态。

Demis Hassabis:但我们的工具可以超越这些。它们可以是11维,12维的。

我经常举的例子是当我和 Gary Kasparov 下棋时,我们讨论过象棋之类的东西,如果你很擅长下棋,你不能想 Gary 他的走法,但他可以给你解释。你可以将其理解为事后推理。有一个进一步的解释,也许你不可能发明这个东西,但你可以理解和欣赏,就像你欣赏维瓦尔第或莫扎特一样欣赏它的美。

Lex Fridman:我想问一些更疯狂的问题。比如,你认为地球之外有外星文明吗?

Demis Hassabis:我个人的看法是,我们目前是孤独的。我们已经有各种天文望远镜和其他探测技术,尝试着在太空里寻找其他文明的信号,如果现在有许多外星文明在同时做这样的事,那我们应该听到来自外太空的嘈杂声音。可事实是,我们什么信号也没收到。

有很多人会争辩说,世界上有外星文明,只是我们还没有真正好好地去搜索,或者说我们找的波段错误,也有可能使用了错误的设备,我们没有意识到外星人存在的形式非常不同,等等。但我不同意这些观点,我们其实已经做了很多探索了,如果真有那么多外星文明,那我们应该早就发现了。

有趣的是,如果地球是孤独的文明,从大过滤器(Great Filters)的角度来看,这还挺令人欣慰,这意味着我们已经通过大过滤器的筛选了。

99科技网:http://www.99it.com.cn

相关推荐
人工智能在交通中的应用:更快地走向未来 人工智能在交通中的应用:更快地走向未来

随着在网络安全中依赖数据和人工智能的能力,增加网络安全防御,也降低了交

快资讯2022-09-15

DeepMind 发了篇论文,把我看笑了 DeepMind 发了篇论文,把我看笑了

DeepMind 一直是通用人工智能(AGI)探索路上的先行者。

快资讯2022-09-15

给我1张图,生成30秒视频!|DeepMind新作 给我1张图,生成30秒视频!|DeepMind新作

近日,DeepMind提出了一种基于概率帧预测的图像建模和视觉任务的通用框架——

快资讯2022-09-15

GPT-3泄露了我的真实姓名 GPT-3泄露了我的真实姓名

最近,有关 GPT-3 的消息再次引发 Hacker News 的热议。

快资讯2022-09-15

人工智能职业教育怎么搞?操作系统层级的解法来了 人工智能职业教育怎么搞?操作系统层级的解法来了

几乎每隔一段时间,AI人才的话题就会成为舆论焦点。

快资讯2022-09-15

气场全开!多款硬实力傍身的“四足仿生机器人”出场即巅峰! 气场全开!多款硬实力傍身的“四足仿生机器人”出场即巅峰!

8月20日上午,2022世界机器人大会开幕式在京举行。

快资讯2022-09-15

深度学习加速技术会是AI“高度近视”的破解之法? 深度学习加速技术会是AI“高度近视”的破解之法?

数据精度、存储空间、处理速度,发展AI必须三者共同进步。

快资讯2022-09-15

DeepMind创始人Demis Hassabis:AI 的强大,超乎我们的想象 DeepMind创始人Demis Hassabis:AI 的强大,超乎我们的想象

有人认为 AI 已经穷途末路,但一些绝顶聪明的人还在继续求索。

快资讯2022-09-15

商汤扯下AI行业遮羞布 商汤扯下AI行业遮羞布

商汤泡沫的破裂,也意味着AI行业的遮羞布被撕开一角。

快资讯2022-09-15

全能不如专精!微软发布Z-code++屠榜文本摘要,参数量仅为PaLM的1/600 全能不如专精!微软发布Z-code++屠榜文本摘要,参数量仅为PaLM的1/600

超大规模预训练模型混战之后,NLP模型该走向何方?

快资讯2022-09-15