主页 > 快资讯 > 正文

DeepMind创始人:AI 的强大,超乎我们的想象(9)

2022-09-15 13:48来源:未知编辑:admin

扫一扫

分享文章到微信

扫一扫

关注99科技网微信公众号

在这种情况下,血浆控制是完美的。这个等离子体有100万℃,比太阳还热,显然没有任何材料可以容纳它。因此必须有非常强大的超导磁场,但问题是等离子体相当不稳定,就像在一个反应堆中持有许多颗星,提前预测等离子体会做什么,你可以在几百万秒内移动磁场来控制它接下来会做什么。

如果你把它看作是一个强化学习预测问题,这似乎很完美,有控制器,可以移动磁场和切割,但此前用的是传统的控制器。我希望有一种可控的规则是他们不能在当下对等离子体做出反应,必须是硬编码的。

Lex Fridman:AI 最终解决了核聚变。

Demis Hassabis:去年我们在《自然》杂志上发表了关于解决这个问题的论文,把等离子体固定在一个特定的形状。实际上这几乎就像是把等离子体雕刻成不同的形状,控制它并保持在那里创纪录的时间。这是核聚变的一个未解决的问题。

把它包含在结构中并保持,还有一些不同形状更有利于能量的产生,称为滴液等等,这是很重要的。我们正与许多核聚变初创公司沟通,看在核聚变领域可以解决的下一个问题是什么。

Lex Fridman:论文标题中还有一个迷人的地方,通过解决分数电子问题来推动密度函数的前沿。你能解释一下这项工作吗?AI 在未来能否对任意的量子力学系统进行建模和模拟?

Demis Hassabis:人们试图写出密度函数的近似值以及对电子云的描述,观察两个元素放在一起时如何相互作用。而我们试图做的是学习一种模拟,学习一种能够描述更多化学类型的化学函数。

到目前为止,AI 可以运行昂贵的模拟,但只能模拟非常小和非常简单的分子,我们无法做到模拟大型材料。因此要建立函数近似值来展示其方程后,描述电子在做什么,所有材料科学和性质都是由电子如何相互作用来控制的。

Lex Fridman:通过功能对模拟进行总结来接近实际模拟出来的结果,这项任务的难度在于运行复杂的模拟,学习从初始条件和模拟参数的映射任务,学习函数会是什么?

Demis Hassabis:这很棘手,但好消息是我们已经做到了,我们可以在计算集群上运行大量的模拟,即分子动力学模拟,由此产生了大量的数据。在这种情况下,数据是生成的。这就是为什么我们使用游戏模拟器来生成数据,因为可以随心所欲地创造出更多的数据。如果在云端有空闲的电脑,我们就可以运行这些计算。

3AI 与人类

99科技网:http://www.99it.com.cn

相关推荐
人工智能在交通中的应用:更快地走向未来 人工智能在交通中的应用:更快地走向未来

随着在网络安全中依赖数据和人工智能的能力,增加网络安全防御,也降低了交

快资讯2022-09-15

DeepMind 发了篇论文,把我看笑了 DeepMind 发了篇论文,把我看笑了

DeepMind 一直是通用人工智能(AGI)探索路上的先行者。

快资讯2022-09-15

给我1张图,生成30秒视频!|DeepMind新作 给我1张图,生成30秒视频!|DeepMind新作

近日,DeepMind提出了一种基于概率帧预测的图像建模和视觉任务的通用框架——

快资讯2022-09-15

GPT-3泄露了我的真实姓名 GPT-3泄露了我的真实姓名

最近,有关 GPT-3 的消息再次引发 Hacker News 的热议。

快资讯2022-09-15

人工智能职业教育怎么搞?操作系统层级的解法来了 人工智能职业教育怎么搞?操作系统层级的解法来了

几乎每隔一段时间,AI人才的话题就会成为舆论焦点。

快资讯2022-09-15

气场全开!多款硬实力傍身的“四足仿生机器人”出场即巅峰! 气场全开!多款硬实力傍身的“四足仿生机器人”出场即巅峰!

8月20日上午,2022世界机器人大会开幕式在京举行。

快资讯2022-09-15

深度学习加速技术会是AI“高度近视”的破解之法? 深度学习加速技术会是AI“高度近视”的破解之法?

数据精度、存储空间、处理速度,发展AI必须三者共同进步。

快资讯2022-09-15

DeepMind创始人Demis Hassabis:AI 的强大,超乎我们的想象 DeepMind创始人Demis Hassabis:AI 的强大,超乎我们的想象

有人认为 AI 已经穷途末路,但一些绝顶聪明的人还在继续求索。

快资讯2022-09-15

商汤扯下AI行业遮羞布 商汤扯下AI行业遮羞布

商汤泡沫的破裂,也意味着AI行业的遮羞布被撕开一角。

快资讯2022-09-15

全能不如专精!微软发布Z-code++屠榜文本摘要,参数量仅为PaLM的1/600 全能不如专精!微软发布Z-code++屠榜文本摘要,参数量仅为PaLM的1/600

超大规模预训练模型混战之后,NLP模型该走向何方?

快资讯2022-09-15