DeepMind创始人:AI 的强大,超乎我们的想象(9)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
在这种情况下,血浆控制是完美的。这个等离子体有100万℃,比太阳还热,显然没有任何材料可以容纳它。因此必须有非常强大的超导磁场,但问题是等离子体相当不稳定,就像在一个反应堆中持有许多颗星,提前预测等离子体会做什么,你可以在几百万秒内移动磁场来控制它接下来会做什么。
如果你把它看作是一个强化学习预测问题,这似乎很完美,有控制器,可以移动磁场和切割,但此前用的是传统的控制器。我希望有一种可控的规则是他们不能在当下对等离子体做出反应,必须是硬编码的。
Lex Fridman:AI 最终解决了核聚变。
Demis Hassabis:去年我们在《自然》杂志上发表了关于解决这个问题的论文,把等离子体固定在一个特定的形状。实际上这几乎就像是把等离子体雕刻成不同的形状,控制它并保持在那里创纪录的时间。这是核聚变的一个未解决的问题。
把它包含在结构中并保持,还有一些不同形状更有利于能量的产生,称为滴液等等,这是很重要的。我们正与许多核聚变初创公司沟通,看在核聚变领域可以解决的下一个问题是什么。
Lex Fridman:论文标题中还有一个迷人的地方,通过解决分数电子问题来推动密度函数的前沿。你能解释一下这项工作吗?AI 在未来能否对任意的量子力学系统进行建模和模拟?
Demis Hassabis:人们试图写出密度函数的近似值以及对电子云的描述,观察两个元素放在一起时如何相互作用。而我们试图做的是学习一种模拟,学习一种能够描述更多化学类型的化学函数。
到目前为止,AI 可以运行昂贵的模拟,但只能模拟非常小和非常简单的分子,我们无法做到模拟大型材料。因此要建立函数近似值来展示其方程后,描述电子在做什么,所有材料科学和性质都是由电子如何相互作用来控制的。
Lex Fridman:通过功能对模拟进行总结来接近实际模拟出来的结果,这项任务的难度在于运行复杂的模拟,学习从初始条件和模拟参数的映射任务,学习函数会是什么?
Demis Hassabis:这很棘手,但好消息是我们已经做到了,我们可以在计算集群上运行大量的模拟,即分子动力学模拟,由此产生了大量的数据。在这种情况下,数据是生成的。这就是为什么我们使用游戏模拟器来生成数据,因为可以随心所欲地创造出更多的数据。如果在云端有空闲的电脑,我们就可以运行这些计算。
3AI 与人类
99科技网:http://www.99it.com.cn
