人工智能20年,只能绘画和下棋?(4)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
所以说,所以AlphaFold系统所代表的技术,将来可能以非常高效的手段发现并帮助人类解决问题。
也许若干年之后,我们探索发现到最后研制生产和使用靶向药的速度会更快,成本更低,可能我们可以针对任何一个单独的人,用极低的成本和快速的研发,就对他的特定疾病进行靶向药的针对治疗,从而更快的恢复健康。尽管这是一个畅想,我觉得可能会慢慢实现,也许是30年,也许是50年之后,所以人工智能的实际意义肯定是巨大的。 03 工业红线是AI可用与否的关键 刘兴亮:如果让您来当裁判,评估人工智能的发展水平,满分一百分,您觉得目前能得多少分?
沈徽: 其实我们谈论更多的是人工智能技术的发展水平是不是已经超越了一个「工业红线」,当一个技术,它在工业红线之下的时,不太可用,会出现大大小小的问题,但它超越红线之后就变得可用或者人是可以在相当程度上依赖它的。
所以评估的标准,要看人工智能在它相关的一些应用领域上是不是已经越过了工业红线,以及在多大程度上越过?对这个回答我是相当乐观的。
拿计算机视觉来说,这是AI很重要的一个领域。我们的AI技术很早就在物体识别和人的识别上超过人类,人眼的错误率大概在6%左右,机器的错误率则远远低于这个数字。
再比方AI创作,去画一个风格画,或者是做一个特效,现在AI很大程度上不一定以假乱真,但基本上已经是非常接近一个实际的人去作画,所以AI技术已经超过工业红线,甚至远远超过专家的水准,但我们不能下结论说AI已经超过人,它离人的智慧还是差得很远。
AI作画成品图,图源:量子位 到底差在什么地方?
首先,我觉得物体识别它超过了人类,仅限于非常细分的、垂直,定义好的场景,但是如果想要把能力泛化到任何一个领域去,这样的一个泛化能力是相对缺乏的。
换句话说,可能我的某一个特定的算法它做识别类任务特别好,但是其他类型的任务,是否还能够做准确的分类?需要打个问号,如果是AI没有见过的,可能得到的结果并不好。
其次,我觉得需要解决技术的资源消耗,或者说成本问题。如何能够让一个针对特定领域的AI技术,很快、很容易的应用,就涉及到投资回报率的问题,只有当投资回报率足够好时,它才有可能会大量应用。
如果拿人脑举例,我们人脑的功耗是大约20瓦,当你仔细思认真思考问题时,大概功耗是20瓦。今天一块GPU卡很轻易就能达到250瓦,这样的一块GPU卡,功耗远超人脑,如果需要1000块的卡,才能解决某个特定问题,并且做的比人类好,那么投入产出比就是不理想的。
99科技网:http://www.99it.com.cn
