人工智能20年,只能绘画和下棋?(7)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
沈徽: 人工智能技术的落地,一方面是需要技术或者产品提供方进行不断的迭代,不断的提升,但另一方面,不管从社会的宣传层面,还是从用户的引导层面,要对人工智能技术目前在特定的产品上面要有相对比较清晰的界定和沟通,我觉得非常重要。
技术它从不成熟到成熟之间,一方面是有技术本身迭代,这是应该完成的事情。另一方面如何去创造一个相对来说比较合适的社会环境,让技术从小孩的状态成长为大人,这一段旅程中是需要有社会性的力量,来帮助它成长起来。
我们知道AI是个好东西,它一定能够帮我们带来很多的好处,未来也会改变我们的生活,但在这个过程当中,如何能够让它在盘旋式上升的过程中,能够有较快的速度体现在发展方面又不会过多的跨越边界,造成伤害,以及包括宣传、教育引导用户不断的提升对AI的认知,都是必要的。
如果莫斯科国际象棋比赛在赛前对所有参赛棋手进行赛前教育,表明机械臂有可能会错误识别你的手,情况或许会变得非常不一样。有类似的引导可能悲剧就不会发生。
莫斯科国际象棋大赛,一男孩被机器人夹断手指,图源 :Baza 回到电动车辅助驾驶造成车祸这件事中,如果我们把这件事故一分为二,一方面是在厂商要对产品的质量、产品的可靠性上需要做一个清晰的描述,甚至基于一个规则从产品安全设计层面对用户进行有效的指导。
另一方面从使用者的角度来说,对于一个新东西,要有一个学习的态度,要了解新的规则习惯,这样才能更好地使用新技术,让人和机器有更好地配合。
刘兴亮: 人工智能可能还会带来哪些问题和负面效果,应该如何去应对这些问题的出现?
沈徽: 任何一个新事物出现它一定有两面性,我们更多的是关注如何避免一些可能产生的负面情况。
AI是由算法、算力和数据共同支持,可能首先会想到数据的安全性、用户的隐私问题,特别是深度学习,这样的AI技术其实是需要用大量的数据来做燃料,去产生深度学习的模型。
在此之外,就是数据的公平性。因为深度学习实际是基于数据统计的归纳系统。从某种程度上来说什么样的数据,它就会总结出什么样的规律。根据总结出的规律,推导结论。所以在我们深度学习的模型过程中,数据的公平性非常重要,这样才能最大程度上减少小意外情况的发生。
举个例子,假设我有一个模型用来识别天鹅,我认为世界上的天鹅都是白的,因为我收集了9999只天鹅都是白天鹅,不管天鹅放进模型后是坐着、躺着还是飞着,都能识别出来。某一天,出现一只黑天鹅,模型可能无法识别,就不会把它算作天鹅,因为AI模型从来没有见过黑天鹅,而事实证明当我们发现第一只黑天鹅时,可能就会有第10只、第100只、第1000只黑天鹅,因为在某些地方的天鹅都是黑的品种,这就是公平性的问题,如果我制作一个识别天鹅的模型,它只能识别白天鹅那对黑天鹅是不公平的,所以我觉得这就是数据的安全,隐私以及数据的公平性。
99科技网:http://www.99it.com.cn
