人工智能20年,只能绘画和下棋?(5)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
再者,AI它作为一个技术,本身很难体现出使用价值,它必须要跟实际的场景做结合,进行赋能,必须要与实际的问题做结合。这时它的价值、使用价值,才会体现出来,而且把AI技术跟实际问题结合的前提,是开发人员必须了解实际的问题。
比方说新能源汽车电池,有很多重要的质量检测环节,如果检测不严格是有安全风险的。过去产线上可能有100道工序,就有100个检测的环节,如果不到电池厂去观察生产流水线,去与技术员交流,不了解电池的电化学、热化学理,很难设计出符合应用场景的AI算法,去解决问题。
所以AI的技术应用,它不是单门靠计算机科学家、人工智能研究员、算法工程师就能完成的,它是需要跟行业的专家交流来进行技术结合。彼此越了解,它产生的效果就会更大。 04 算法、算力和数据是人工智能发展的关键 刘兴亮: 人工智能技术它的关键到底是什么?
沈徽: 人工智能,特别是近20年,基于深度学习的人工智能技术,我觉得有三个非常重要的因素:算力、算法、数据,以及我个人的看法:应用落地。因为我认为应用落地或者是对用户需求的满足,实际上是为三要素做一个方向的指引,用需求去引导供给。人工智能的技术爆发或者成熟度的提升,是与三要素不断的被满足或者不断的取得突破,有非常紧密的联系。
先从算力说起,算力的增长,我觉得是一个很客观的因素。算力与摩尔定律有关,具体到半导体上,芯片产业每隔18个月,它的性能提升一倍,价格下降一半。这其实是非常可怕的规律,因为它是一个幂指数的上升,而不是一个线性的增长。
第二个是数据,我觉得数据很重要的原因有几个推手。第一个推手是互联网应用产生大量的资讯、数据,不断将其结构化、网络化,变得容易获取,能够共享聚合。另外一只推手是世界范围内所谓的数字化转型。
数字化转型其实就是把企业内部以及企业之间经营的相关的内容能够以一个数据的方式呈现出来,记录下来,进行分析。这些内容都为深度学习提供了大量的燃料,这些燃料能够去帮助深度学习技术去产生更好的模型,帮助人类解决问题。如果没有互联网以及数字化转型的浪潮,他们在过去15-20年做的铺垫,就会变成巧妇难为无米之炊,AI的发展也正是是受益于此。
第三个算法,其实算法的背后就是人以及人在思考上的突破。一方面体现在高校、研究院的众多科研人员对于深度学习本身的认知,包括神经网络、深度学习网络的认知,也包括实践上的认知和数学上的认知。此外还有大量的应用在落地之后,是对研究方向以及研究课题提出反馈或者提出引导。而这些引导会吸引大量的工程技术人员去尝试此类方向。其实这就形成了一个很好的循环,从高校研究所到企业到政府再到用户,这样一个闭环。
99科技网:http://www.99it.com.cn
