人工智能是不是走错了方向?(8)
扫一扫
分享文章到微信
扫一扫
关注99科技网微信公众号
那么反观人类意识,对于信号在 频域空间 的处理,其最明显的例子就是对音频信号的处理了。这一点可以从我们主观对于音高的感受去验证,而在解剖的层面上,同样可以找到 对应的结构 。这一结构存在于我们的内耳而非大脑中——这一点同样和在“人工智能系统中”傅里叶变换部分常常出现在数据的预处理而非可学习结构中保持一致——这一结构即是内耳的基底膜。不精确地来讲,基底膜的两端松紧程度不同,导致基底膜的不同位置对不同的频率有其响应,而遍布基底膜的毛细胞则将膜各部分的振动反馈至听神经。从这个角度讲,基底膜上的 每个毛细胞反馈近似等价于傅里叶变换中的一个基 。于是我们上面的三个议题都得到了解答: 构建人类意识的生物学结构中确实存在与傅里叶变换目的相同的、显式将信号从时域空间转换为频域空间的结构 。
另外,人类大脑大部分区域的神经元链接,是 脉冲激活模式 ,人工神经网络中对应的概念为Spiking Neural Network (SNN)。在这种链接中,一个神经元的激活不仅仅取决于其接受的脉冲强度,同时也取决于脉冲的间隔和数量。我并非SNN或神经科学方面的专家,但是这里我可以提出一种观点,即Spiking Neural Network这样的激活模式天然地encode了部分频域空间上的信息。如此观点被证实成立,那么很可能意味着人脑在可学习的部分中,其隐空间 同样在处理频域空间上的信息。
我不信大脑每天都在大量的模型训练或卷积,来深度学习认识一个东西这里又是两个独立的议题:
大脑是否每天都在进行大量的模型训练
大脑中是否存在卷积单元
对于1,我们从三方面看:
A: 大脑是否在每天持续地接受信息,是的。
B: 大脑是否在每天对这些信息进行学习,是的。
C: 大脑是否有专门进行训练而不接受信息的时间。在我了解的范畴内,根据现有的观察和印证,人类的睡眠深-浅睡眠周期变化中,最主要的作用之一就是短期记忆向长期记忆的迁移、记忆的反混淆,以及具象概念向抽象概念的总结。
对于A与B,在现有的研究领域有一个类似的议题叫做Continual Learning,此处就不展开了。题主大可以快速阅读一些相应的文献找到其中的对照。
对于2, 大脑的视觉皮层中确实存在类似卷积的结构 。早在1962年,D. H. Hubel和T. N. Wiesel就发现了在猫的视觉皮层中,特定的一组神经元仅对特定角度的线条产生反应。进一步的研究显示这些被称为Columns的结构存在特殊的组织性以及独特的感受野分布。下面这张图是V1视觉皮层的一张示意图:
99科技网:http://www.99it.com.cn
